write - write to a file descriptor
Standard C library (libc
, -lc
)
#include <unistd.h>
ssize_t write(int fd, const void buf[.count], size_t count);
write() writes up to count
bytes from the
buffer starting at buf
to the file referred to by the file
descriptor fd
.
The number of bytes written may be less than count
if, for
example, there is insufficient space on the underlying physical medium,
or the RLIMIT_FSIZE resource limit is encountered (see
setrlimit(2)), or the call was interrupted by a signal
handler after having written less than count
bytes. (See also
pipe(7).)
For a seekable file (i.e., one to which lseek(2) may be applied, for example, a regular file) writing takes place at the file offset, and the file offset is incremented by the number of bytes actually written. If the file was open(2)ed with O_APPEND, the file offset is first set to the end of the file before writing. The adjustment of the file offset and the write operation are performed as an atomic step.
POSIX requires that a read(2) that can be proved to occur after a write() has returned will return the new data. Note that not all filesystems are POSIX conforming.
According to POSIX.1, if count
is greater than
SSIZE_MAX, the result is implementation-defined; see
NOTES for the upper limit on Linux.
On success, the number of bytes written is returned. On error, -1 is
returned, and errno
is set to indicate the error.
Note that a successful write() may transfer fewer
than count
bytes. Such partial writes can occur for various
reasons; for example, because there was insufficient space on the disk
device to write all of the requested bytes, or because a blocked
write() to a socket, pipe, or similar was interrupted
by a signal handler after it had transferred some, but before it had
transferred all of the requested bytes. In the event of a partial write,
the caller can make another write() call to transfer
the remaining bytes. The subsequent call will either transfer further
bytes or may result in an error (e.g., if the disk is now full).
If count
is zero and fd
refers to a regular file,
then write() may return a failure status if one of the
errors below is detected. If no errors are detected, or error detection
is not performed, 0 is returned without causing any other effect. If
count
is zero and fd
refers to a file other than a
regular file, the results are not specified.
The file descriptor fd
refers to a file other than a socket
and has been marked nonblocking (O_NONBLOCK), and the
write would block. See open(2) for further details on
the O_NONBLOCK flag.
The file descriptor fd
refers to a socket and has been
marked nonblocking (O_NONBLOCK), and the write would
block. POSIX.1-2001 allows either error to be returned for this case,
and does not require these constants to have the same value, so a
portable application should check for both possibilities.
fd
is not a valid file descriptor or is not open for
writing.
fd
refers to a datagram socket for which a peer address has
not been set using connect(2).
The user's quota of disk blocks on the filesystem containing the file
referred to by fd
has been exhausted.
buf
is outside your accessible address space.
An attempt was made to write a file that exceeds the implementation-defined maximum file size or the process's file size limit, or to write at a position past the maximum allowed offset.
The call was interrupted by a signal before any data was written; see signal(7).
fd
is attached to an object which is unsuitable for writing;
or the file was opened with the O_DIRECT flag, and
either the address specified in buf
, the value specified in
count
, or the file offset is not suitably aligned.
A low-level I/O error occurred while modifying the inode. This error
may relate to the write-back of data written by an earlier
write(), which may have been issued to a different file
descriptor on the same file. Since Linux 4.13, errors from write-back
come with a promise that they may
be reported by subsequent.
write() requests, and will
be reported by a
subsequent fsync(2) (whether or not they were also
reported by write()). An alternate cause of
EIO on networked filesystems is when an advisory lock
had been taken out on the file descriptor and this lock has been lost.
See the Lost locks
section of fcntl(2) for
further details.
The device containing the file referred to by fd
has no room
for the data.
The operation was prevented by a file seal; see fcntl(2).
fd
is connected to a pipe or socket whose reading end is
closed. When this happens the writing process will also receive a
SIGPIPE signal. (Thus, the write return value is seen
only if the program catches, blocks or ignores this signal.)
Other errors may occur, depending on the object connected to
fd
.
POSIX.1-2008.
SVr4, 4.3BSD, POSIX.1-2001.
Under SVr4 a write may be interrupted and return EINTR at any point, not just before any data is written.
A successful return from write() does not make any guarantee that data has been committed to disk. On some filesystems, including NFS, it does not even guarantee that space has successfully been reserved for the data. In this case, some errors might be delayed until a future write(), fsync(2), or even close(2). The only way to be sure is to call fsync(2) after you are done writing all your data.
If a write() is interrupted by a signal handler before any bytes are written, then the call fails with the error EINTR; if it is interrupted after at least one byte has been written, the call succeeds, and returns the number of bytes written.
On Linux, write() (and similar system calls) will transfer at most 0x7ffff000 (2,147,479,552) bytes, returning the number of bytes actually transferred. (This is true on both 32-bit and 64-bit systems.)
An error return value while performing write() using direct I/O does not mean the entire write has failed. Partial data may be written and the data at the file offset on which the write() was attempted should be considered inconsistent.
According to POSIX.1-2008/SUSv4 Section XSI 2.9.7 ("Thread Interactions with Regular File Operations"):
All of the following functions shall be atomic with respect to each other in the effects specified in POSIX.1-2008 when they operate on regular files or symbolic links: ...
Among the APIs subsequently listed are write() and writev(2). And among the effects that should be atomic across threads (and processes) are updates of the file offset. However, before Linux 3.14, this was not the case: if two processes that share an open file description (see open(2)) perform a write() (or writev(2)) at the same time, then the I/O operations were not atomic with respect to updating the file offset, with the result that the blocks of data output by the two processes might (incorrectly) overlap. This problem was fixed in Linux 3.14.