LIST_EMPTY, LIST_ENTRY, LIST_FIRST, LIST_FOREACH, LIST_HEAD, LIST_HEAD_INITIALIZER, LIST_INIT, LIST_INSERT_AFTER, LIST_INSERT_BEFORE, LIST_INSERT_HEAD, LIST_NEXT, LIST_REMOVE - implementation of a doubly linked list
Standard C library (libc
, -lc
)
#include <sys/queue.h>
LIST_ENTRY(TYPE);
LIST_HEAD(HEADNAME, TYPE);
LIST_HEAD LIST_HEAD_INITIALIZER(LIST_HEAD head);
void LIST_INIT(LIST_HEAD *head);
int LIST_EMPTY(LIST_HEAD *head);
void LIST_INSERT_HEAD(LIST_HEAD *head,
struct TYPE *elm, LIST_ENTRY NAME);
void LIST_INSERT_BEFORE(struct TYPE *listelm,
struct TYPE *elm, LIST_ENTRY NAME);
void LIST_INSERT_AFTER(struct TYPE *listelm,
struct TYPE *elm, LIST_ENTRY NAME);
struct TYPE *LIST_FIRST(LIST_HEAD *head);
struct TYPE *LIST_NEXT(struct TYPE *elm, LIST_ENTRY NAME);
LIST_FOREACH(struct TYPE *var, LIST_HEAD *head, LIST_ENTRY NAME);
void LIST_REMOVE(struct TYPE *elm, LIST_ENTRY NAME);
These macros define and operate on doubly linked lists.
In the macro definitions, TYPE
is the name of a user-defined
structure, that must contain a field of type LIST_ENTRY
, named
NAME
. The argument HEADNAME
is the name of a
user-defined structure that must be declared using the macro
LIST_HEAD().
A list is headed by a structure defined by the
LIST_HEAD() macro. This structure contains a single
pointer to the first element on the list. The elements are doubly linked
so that an arbitrary element can be removed without traversing the list.
New elements can be added to the list after an existing element, before
an existing element, or at the head of the list. A LIST_HEAD
structure is declared as follows:
LIST_HEAD(HEADNAME, TYPE) head;
where struct HEADNAME
is the structure to be defined, and
struct TYPE
is the type of the elements to be linked into the
list. A pointer to the head of the list can later be declared as:
struct HEADNAME *headp;
(The names head
and headp
are user selectable.)
LIST_ENTRY() declares a structure that connects the elements in the list.
LIST_HEAD_INITIALIZER() evaluates to an initializer
for the list head
.
LIST_INIT() initializes the list referenced by
head
.
LIST_EMPTY() evaluates to true if there are no elements in the list.
LIST_INSERT_HEAD() inserts the new element
elm
at the head of the list.
LIST_INSERT_BEFORE() inserts the new element
elm
before the element listelm
.
LIST_INSERT_AFTER() inserts the new element
elm
after the element listelm
.
LIST_FIRST() returns the first element in the list, or NULL if the list is empty.
LIST_NEXT() returns the next element in the list, or NULL if this is the last.
LIST_FOREACH() traverses the list referenced by
head
in the forward direction, assigning each element in turn
to var
.
LIST_REMOVE() removes the element elm
from
the list.
LIST_EMPTY() returns nonzero if the list is empty, and zero if the list contains at least one entry.
LIST_FIRST(), and LIST_NEXT()
return a pointer to the first or next TYPE
structure,
respectively.
LIST_HEAD_INITIALIZER() returns an initializer that
can be assigned to the list head
.
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/queue.h>
struct entry {
int data;
LIST_ENTRY(entry) entries; /* List */
};
LIST_HEAD(listhead, entry);
int
main(void)
{
struct entry *n1, *n2, *n3, *np;
struct listhead head; /* List head */
int i;
LIST_INIT(&head); /* Initialize the list */
n1 = malloc(sizeof(struct entry)); /* Insert at the head */
LIST_INSERT_HEAD(&head, n1, entries);
n2 = malloc(sizeof(struct entry)); /* Insert after */
LIST_INSERT_AFTER(n1, n2, entries);
n3 = malloc(sizeof(struct entry)); /* Insert before */
LIST_INSERT_BEFORE(n2, n3, entries);
i = 0; /* Forward traversal */
LIST_FOREACH(np, &head, entries)
np->data = i++;
LIST_REMOVE(n2, entries); /* Deletion */
free(n2);
/* Forward traversal */
LIST_FOREACH(np, &head, entries)
printf("%i\n", np->data);
/* List deletion */
n1 = LIST_FIRST(&head);
while (n1 != NULL) {
n2 = LIST_NEXT(n1, entries);
free(n1);
n1 = n2;
}
LIST_INIT(&head);
exit(EXIT_SUCCESS);
}
BSD.
4.4BSD.
LIST_FOREACH() doesn't allow var
to be
removed or freed within the loop, as it would interfere with the
traversal. LIST_FOREACH_SAFE(), which is present on the
BSDs but is not present in glibc, fixes this limitation by allowing
var
to safely be removed from the list and freed from within
the loop without interfering with the traversal.