htobe16, htole16, be16toh, le16toh, htobe32, htole32, be32toh, le32toh, htobe64, htole64, be64toh, le64toh - convert values between host and big-/little-endian byte order
#include <endian.h>
uint16_t htobe16(uint16_t host_16bits);
uint16_t htole16(uint16_t host_16bits);
uint16_t be16toh(uint16_t big_endian_16bits);
uint16_t le16toh(uint16_t little_endian_16bits);
uint32_t htobe32(uint32_t host_32bits);
uint32_t htole32(uint32_t host_32bits);
uint32_t be32toh(uint32_t big_endian_32bits);
uint32_t le32toh(uint32_t little_endian_32bits);
uint64_t htobe64(uint64_t host_64bits);
uint64_t htole64(uint64_t host_64bits);
uint64_t be64toh(uint64_t big_endian_64bits);
uint64_t le64toh(uint64_t little_endian_64bits);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
These functions convert the byte encoding of integer values from the byte order that the current CPU (the "host") uses, to and from little-endian and big-endian byte order.
The number, nn
, in the name of each function indicates the
size of integer handled by the function, either 16, 32, or 64 bits.
The functions with names of the form "htobenn
" convert from
host byte order to big-endian order.
The functions with names of the form "htolenn
" convert from
host byte order to little-endian order.
The functions with names of the form "benn
toh" convert from
big-endian order to host byte order.
The functions with names of the form "lenn
toh" convert from
little-endian order to host byte order.
The program below display the results of converting an integer from host byte order to both little-endian and big-endian byte order. Since host byte order is either little-endian or big-endian, only one of these conversions will have an effect. When we run this program on a little-endian system such as x86-32, we see the following:
$ ./a.out
x.u32 = 0x44332211
htole32(x.u32) = 0x44332211
htobe32(x.u32) = 0x11223344
#include <endian.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
int
main(void)
{
union {
uint32_t u32;
uint8_t arr[4];
} x;
x.arr[0] = 0x11; /* Lowest-address byte */
x.arr[1] = 0x22;
x.arr[2] = 0x33;
x.arr[3] = 0x44; /* Highest-address byte */
printf("x.u32 = %#x\n", x.u32);
printf("htole32(x.u32) = %#x\n", htole32(x.u32));
printf("htobe32(x.u32) = %#x\n", htobe32(x.u32));
exit(EXIT_SUCCESS);
}