catanh, catanhf, catanhl - complex arc tangents hyperbolic
Math library (libm, -lm)
#include <complex.h>
double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);
These functions calculate the complex arc hyperbolic tangent of
z. If y = catanh(z), then z = ctanh(y). The
imaginary part of y is chosen in the interval [-pi/2,pi/2].
One has:
catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))
For an explanation of the terms used in this section, see attributes(7).
| Interface | Attribute | Value | 
| Thread safety | MT-Safe | 
C11, POSIX.1-2008.
glibc 2.1. C99, POSIX.1-2001.
/* Link with "-lm" */
#include <complex.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int
main(int argc, char *argv[])
{
    double complex z, c, f;
    if (argc != 3) {
        fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
        exit(EXIT_FAILURE);
    }
    z = atof(argv[1]) + atof(argv[2]) * I;
    c = catanh(z);
    printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c));
    f = 0.5 * (clog(1 + z) - clog(1 - z));
    printf("formula  = %6.3f %6.3f*i\n", creal(f), cimag(f));
    exit(EXIT_SUCCESS);
}