catan, catanf, catanl - complex arc tangents
Math library (libm
, -lm
)
#include <complex.h>
double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);
These functions calculate the complex arc tangent of z
. If
y = catan(z)
, then z = ctan(y)
. The real part of
y
is chosen in the interval [-pi/2, pi/2].
One has:
catan(z) = (clog(1 + i * z) - clog(1 - i * z)) / (2 * i)
For an explanation of the terms used in this section, see attributes(7).
Interface | Attribute | Value |
Thread safety | MT-Safe |
C11, POSIX.1-2008.
glibc 2.1. C99, POSIX.1-2001.
/* Link with "-lm" */
#include <complex.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int
main(int argc, char *argv[])
{
double complex z, c, f;
double complex i = I;
if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);
}
z = atof(argv[1]) + atof(argv[2]) * I;
c = catan(z);
printf("catan() = %6.3f %6.3f*i\n", creal(c), cimag(c));
f = (clog(1 + i * z) - clog(1 - i * z)) / (2 * i);
printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));
exit(EXIT_SUCCESS);
}