drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 - generate uniformly distributed pseudo-random numbers
Standard C library (libc
, -lc
)
#include <stdlib.h>
double drand48(void);
double erand48(unsigned short xsubi[3]);
long lrand48(void);
long nrand48(unsigned short xsubi[3]);
long mrand48(void);
long jrand48(unsigned short xsubi[3]);
void srand48(long seedval);
unsigned short *seed48(unsigned short seed16v[3]);
void lcong48(unsigned short param[7]);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
All functions shown above:
_XOPEN_SOURCE
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE
These functions generate pseudo-random numbers using the linear congruential algorithm and 48-bit integer arithmetic.
The drand48() and erand48() functions return nonnegative double-precision floating-point values uniformly distributed over the interval [0.0, 1.0).
The lrand48() and nrand48() functions return nonnegative long integers uniformly distributed over the interval [0, 2^31).
The mrand48() and jrand48() functions return signed long integers uniformly distributed over the interval [-2^31, 2^31).
The srand48(), seed48(), and lcong48() functions are initialization functions, one of which should be called before using drand48(), lrand48(), or mrand48(). The functions erand48(), nrand48(), and jrand48() do not require an initialization function to be called first.
All the functions work by generating a sequence of 48-bit integers,
Xi
, according to the linear congruential formula:
Xn+1 = (aXn + c) mod m, where n >= 0
The parameter m
= 2^48, hence 48-bit integer arithmetic is
performed. Unless lcong48() is called, a
and
c
are given by:
a = 0x5DEECE66D
c = 0xB
The value returned by any of the functions
drand48(), erand48(),
lrand48(), nrand48(),
mrand48(), or jrand48() is computed by
first generating the next 48-bit Xi
in the sequence. Then the
appropriate number of bits, according to the type of data item to be
returned, is copied from the high-order bits of Xi
and
transformed into the returned value.
The functions drand48(), lrand48(),
and mrand48() store the last 48-bit Xi
generated in an internal buffer. The functions
erand48(), nrand48(), and
jrand48() require the calling program to provide
storage for the successive Xi
values in the array argument
xsubi
. The functions are initialized by placing the initial
value of Xi
into the array before calling the function for the
first time.
The initializer function srand48() sets the high
order 32-bits of Xi
to the argument seedval
. The low
order 16-bits are set to the arbitrary value 0x330E.
The initializer function seed48() sets the value of
Xi
to the 48-bit value specified in the array argument
seed16v
. The previous value of Xi
is copied into an
internal buffer and a pointer to this buffer is returned by
seed48().
The initialization function lcong48() allows the
user to specify initial values for Xi
, a
, and
c
. Array argument elements param[0-2]
specify
Xi
, param[3-5]
specify a
, and
param[6]
specifies c
. After lcong48()
has been called, a subsequent call to either srand48()
or seed48() will restore the standard values of
a
and c
.
For an explanation of the terms used in this section, see attributes(7).
Interface | Attribute | Value |
drand48(), erand48(), lrand48(), nrand48(), mrand48(), jrand48(), srand48(), seed48(), lcong48() |
Thread safety | MT-Unsafe race:drand48 |
The above functions record global state information for the random number generator, so they are not thread-safe.
POSIX.1-2008.
POSIX.1-2001, SVr4.