send, sendto, sendmsg - send a message on a socket
Standard C library (libc
, -lc
)
#include <sys/socket.h>
ssize_t send(int sockfd, const void buf[.len], size_t len, int flags);
ssize_t sendto(int sockfd, const void buf[.len], size_t len, int flags,
const struct sockaddr *dest_addr, socklen_t addrlen);
ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
The system calls send(), sendto(), and sendmsg() are used to transmit a message to another socket.
The send() call may be used only when the socket is
in a connected
state (so that the intended recipient is known).
The only difference between send() and
write(2) is the presence of flags
. With a zero
flags
argument, send() is equivalent to
write(2). Also, the following call
send(sockfd, buf, len, flags);
is equivalent to
sendto(sockfd, buf, len, flags, NULL, 0);
The argument sockfd
is the file descriptor of the sending
socket.
If sendto() is used on a connection-mode
(SOCK_STREAM, SOCK_SEQPACKET) socket,
the arguments dest_addr
and addrlen
are ignored (and
the error EISCONN may be returned when they are not
NULL and 0), and the error ENOTCONN is returned when
the socket was not actually connected. Otherwise, the address of the
target is given by dest_addr
with addrlen
specifying
its size. For sendmsg(), the address of the target is
given by msg.msg_name
, with msg.msg_namelen
specifying
its size.
For send() and sendto(), the
message is found in buf
and has length len
. For
sendmsg(), the message is pointed to by the elements of
the array msg.msg_iov
. The sendmsg() call also
allows sending ancillary data (also known as control information).
If the message is too long to pass atomically through the underlying protocol, the error EMSGSIZE is returned, and the message is not transmitted.
No indication of failure to deliver is implicit in a send(). Locally detected errors are indicated by a return value of -1.
When the message does not fit into the send buffer of the socket, send() normally blocks, unless the socket has been placed in nonblocking I/O mode. In nonblocking mode it would fail with the error EAGAIN or EWOULDBLOCK in this case. The select(2) call may be used to determine when it is possible to send more data.
The flags
argument is the bitwise OR of zero or more of the
following flags.
Tell the link layer that forward progress happened: you got a successful reply from the other side. If the link layer doesn't get this it will regularly reprobe the neighbor (e.g., via a unicast ARP). Valid only on SOCK_DGRAM and SOCK_RAW sockets and currently implemented only for IPv4 and IPv6. See arp(7) for details.
Don't use a gateway to send out the packet, send to hosts only on directly connected networks. This is usually used only by diagnostic or routing programs. This is defined only for protocol families that route; packet sockets don't.
Enables nonblocking operation; if the operation would block, EAGAIN or EWOULDBLOCK is returned. This provides similar behavior to setting the O_NONBLOCK flag (via the fcntl(2) F_SETFL operation), but differs in that MSG_DONTWAIT is a per-call option, whereas O_NONBLOCK is a setting on the open file description (see open(2)), which will affect all threads in the calling process as well as other processes that hold file descriptors referring to the same open file description.
Terminates a record (when this notion is supported, as for sockets of type SOCK_SEQPACKET).
The caller has more data to send. This flag is used with TCP sockets to obtain the same effect as the TCP_CORK socket option (see tcp(7)), with the difference that this flag can be set on a per-call basis.
Since Linux 2.6, this flag is also supported for UDP sockets, and informs the kernel to package all of the data sent in calls with this flag set into a single datagram which is transmitted only when a call is performed that does not specify this flag. (See also the UDP_CORK socket option described in udp(7).)
Don't generate a SIGPIPE signal if the peer on a stream-oriented socket has closed the connection. The EPIPE error is still returned. This provides similar behavior to using sigaction(2) to ignore SIGPIPE, but, whereas MSG_NOSIGNAL is a per-call feature, ignoring SIGPIPE sets a process attribute that affects all threads in the process.
Sends out-of-band
data on sockets that support this notion
(e.g., of type SOCK_STREAM); the underlying protocol
must also support out-of-band
data.
Attempts TCP Fast Open (RFC7413) and sends data in the SYN like a
combination of connect(2) and
write(2), by performing an implicit
connect(2) operation. It blocks until the data is
buffered and the handshake has completed. For a non-blocking socket, it
returns the number of bytes buffered and sent in the SYN packet. If the
cookie is not available locally, it returns
EINPROGRESS, and sends a SYN with a Fast Open cookie
request automatically. The caller needs to write the data again when the
socket is connected. On errors, it sets the same errno
as
connect(2) if the handshake fails. This flag requires
enabling TCP Fast Open client support on sysctl
net.ipv4.tcp_fastopen
.
Refer to TCP_FASTOPEN_CONNECT socket option in tcp(7) for an alternative approach.
The definition of the msghdr
structure employed by
sendmsg() is as follows:
struct msghdr {
void *msg_name; /* Optional address */
socklen_t msg_namelen; /* Size of address */
struct iovec *msg_iov; /* Scatter/gather array */
size_t msg_iovlen; /* # elements in msg_iov */
void *msg_control; /* Ancillary data, see below */
size_t msg_controllen; /* Ancillary data buffer len */
int msg_flags; /* Flags (unused) */
};
The msg_name
field is used on an unconnected socket to
specify the target address for a datagram. It points to a buffer
containing the address; the msg_namelen
field should be set to
the size of the address. For a connected socket, these fields should be
specified as NULL and 0, respectively.
The msg_iov
and msg_iovlen
fields specify
scatter-gather locations, as for writev(2).
You may send control information (ancillary data) using the
msg_control
and msg_controllen
members. The maximum
control buffer length the kernel can process is limited per socket by
the value in /proc/sys/net/core/optmem_max
; see
socket(7). For further information on the use of
ancillary data in various socket domains, see unix(7)
and ip(7).
The msg_flags
field is ignored.
On success, these calls return the number of bytes sent. On error, -1
is returned, and errno
is set to indicate the error.
An example of the use of sendto() is shown in getaddrinfo(3).
These are some standard errors generated by the socket layer. Additional errors may be generated and returned from the underlying protocol modules; see their respective manual pages.
(For UNIX domain sockets, which are identified by pathname) Write permission is denied on the destination socket file, or search permission is denied for one of the directories the path prefix. (See path_resolution(7).)
(For UDP sockets) An attempt was made to send to a network/broadcast address as though it was a unicast address.
The socket is marked nonblocking and the requested operation would block. POSIX.1-2001 allows either error to be returned for this case, and does not require these constants to have the same value, so a portable application should check for both possibilities.
(Internet domain datagram sockets) The socket referred to by
sockfd
had not previously been bound to an address and, upon
attempting to bind it to an ephemeral port, it was determined that all
port numbers in the ephemeral port range are currently in use. See the
discussion of /proc/sys/net/ipv4/ip_local_port_range
in
ip(7).
Another Fast Open is in progress.
sockfd
is not a valid open file descriptor.
Connection reset by peer.
The socket is not connection-mode, and no peer address is set.
An invalid user space address was specified for an argument.
A signal occurred before any data was transmitted; see signal(7).
Invalid argument passed.
The connection-mode socket was connected already but a recipient was specified. (Now either this error is returned, or the recipient specification is ignored.)
The socket type requires that message be sent atomically, and the size of the message to be sent made this impossible.
The output queue for a network interface was full. This generally indicates that the interface has stopped sending, but may be caused by transient congestion. (Normally, this does not occur in Linux. Packets are just silently dropped when a device queue overflows.)
No memory available.
The socket is not connected, and no target has been given.
The file descriptor sockfd
does not refer to a socket.
Some bit in the flags
argument is inappropriate for the
socket type.
The local end has been shut down on a connection oriented socket. In this case, the process will also receive a SIGPIPE unless MSG_NOSIGNAL is set.
According to POSIX.1-2001, the msg_controllen
field of the
msghdr
structure should be typed as socklen_t
, and the
msg_iovlen
field should be typed as int
, but glibc
currently types both as size_t
.
POSIX.1-2008.
MSG_CONFIRM is a Linux extension.
4.4BSD, SVr4, POSIX.1-2001. (first appeared in 4.2BSD).
POSIX.1-2001 describes only the MSG_OOB and MSG_EOR flags. POSIX.1-2008 adds a specification of MSG_NOSIGNAL.
See sendmmsg(2) for information about a Linux-specific system call that can be used to transmit multiple datagrams in a single call.
Linux may return EPIPE instead of ENOTCONN.