The explicit_bzero() function addresses a problem
that security-conscious applications may run into when using
bzero(): if the compiler can deduce that the location
to be zeroed will never again be touched by a correct
program,
then it may remove the bzero() call altogether. This is
a problem if the intent of the bzero() call was to
erase sensitive data (e.g., passwords) to prevent the possibility that
the data was leaked by an incorrect or compromised program. Calls to
explicit_bzero() are never optimized away by the
compiler.
The explicit_bzero() function does not solve all
problems associated with erasing sensitive data:
The explicit_bzero() function does not
guarantee that sensitive data is completely erased from memory. (The
same is true of bzero().) For example, there may be
copies of the sensitive data in a register and in "scratch" stack areas.
The explicit_bzero() function is not aware of these
copies, and can't erase them.
In some circumstances, explicit_bzero() can
decrease
security. If the compiler determined that the variable
containing the sensitive data could be optimized to be stored in a
register (because it is small enough to fit in a register, and no
operation other than the explicit_bzero() call would
need to take the address of the variable), then the
explicit_bzero() call will force the data to be copied
from the register to a location in RAM that is then immediately erased
(while the copy in the register remains unaffected). The problem here is
that data in RAM is more likely to be exposed by a bug than data in a
register, and thus the explicit_bzero() call creates a
brief time window where the sensitive data is more vulnerable than it
would otherwise have been if no attempt had been made to erase the
data.
Note that declaring the sensitive variable with the
volatile qualifier does not
eliminate the
above problems. Indeed, it will make them worse, since, for example, it
may force a variable that would otherwise have been optimized into a
register to instead be maintained in (more vulnerable) RAM for its
entire lifetime.
Notwithstanding the above details, for security-conscious
applications, using explicit_bzero() is generally
preferable to not using it. The developers of
explicit_bzero() anticipate that future compilers will
recognize calls to explicit_bzero() and take steps to
ensure that all copies of the sensitive data are erased, including
copies in registers or in "scratch" stack areas.